References:
[1] Schuman, C.D., Kulkarni, S.R., Parsa, M. et al. Opportunities for neuromorphic computing algorithms and applications. Nat Comput Sci 2, 10–19 (2022). https://doi.org/10.1038/s43588-021-00184-y.
[2] Enuganti, P.K., Sen Bhattacharya, B., Serrano Gotarredona, T. and Rhodes, O. (2025), Neuromorphic Computing and Applications: A Topical Review. WIREs Data Mining Knowl Discov, 15: e70014. https://doi.org/10.1002/widm.70014.
[3] Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A., Deep learning in spiking neural networks. Neural Networks, Volume 111, 2019, Pages 47-63, https://doi.org/10.1016/j.neunet.2018.12.002.
[4] Ivanov D, Chezhegov A, Kiselev M, Grunin A and Larionov D (2022) Neuromorphic artificial intelligence systems. Front. Neurosci. 16:959626. doi: 10.3389/fnins.2022.959626.
[5] Renner, A., Sheldon, F., Zlotnik, A., Tao, L. and Sornborger, A. The backpropagation algorithm implemented on spiking neuromorphic hardware. Nat Commun 15, 9691 (2024). https://doi.org/10.1038/s41467-024-53827-9.
[6] Painkras, E., L. A. Plana, J. Garside, et al. 2013. SpiNNaker: A 1-W 18-Core System-On-Chip for Massively-Parallel Neural Network Simulation. IEEE Journal of Solid- State Circuits 48, no. 8: 1943–1953. https://doi.org/10.1109/jssc.2013.2259038.
[7] Mayr, C., Hoeppner, S. and Furber, S. SpiNNaker 2: A 10 Million Core Processor System for Brain Simulation and Machine Learning. arXiv (2019). https://doi.org/10.48550/arXiv.1911.02385.
[8] Davies, M., N. Srinivasa, T.- H. Lin, et al. 2018. Loihi: A Neuromorphic Manycore Processor With On- Chip Learning. IEEE Micro 38, no. 1: 82–99. https://doi.org/10.1109/mm.2018.112130359.
[9] G. Orchard et al., Efficient Neuromorphic Signal Processing with Loihi 2, 2021 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 2021, pp. 254-259, doi: 10.1109/SiPS52927.2021.00053.
[10] F. Akopyan et al., TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537-1557, Oct. 2015, doi: 10.1109/TCAD.2015.2474396.
[11] Pei, J., Deng, L., Song, S. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 106–111 (2019). https://doi.org/10.1038/s41586-019-1424-8.